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The replacement free energy correction, for vapor phase nucleation, in the classical theory of nucleation
(CNT), is investigated within the confines of the renormalized representation of the molecular system implicit
in the model, based on the capillarity approximation adopted by CNT. The replacement free energy is
associated with the translational degrees of freedom of the clusters that serve as embryos for the formation
of drops, and it is shown that, unless extreme care is exercised, the evaluation of this contribution to the free
energy can involve a redundant counting of molecular configurations that can lead to a predicted nucleation
rate in error by many orders of magnitude. It is demonstrated that the problem arises because of the use of
a coarse grained renormalized version of the actual system and that the correction can be extremely sensitive
to the type of renormalization (model) employed. In the case of CNT, in particular, error can arise from the
fact that the drop used to model the cluster cannot be located more accurately than within the fluctuation of
its volume. This fluctuation, in effect, generates a lattice whose sites the drop is restricted to occupy and
whose lattice parameter is the cube root of the volume of fluctuation. This denial of accessibility of the
continuum volume to the drop eliminates redundant counting. The form for the replacement free energy
factor is derived, discussions of various subtle issues are presented, and similar problems are mentioned in
connection with renormalized versions of molecular systems in other contexts (e.g., in the cases of
microemulsions and polymers, and even in cases such as that of the constant pressure ensemble) where
renormalization does not play a role.

1. Background

Recently, the authors published a letter in Physical Review
Letters,1 which dealt with the role in the classical theory of
nucleation (CNT), of the so-called “length scale for configu-
rational entropy” in the specification of (1) the replacement free
energy,2-6 (2) the 1/S factor,7-9 and (3) so-called internal
consistency.10,11 Now we have obtained additional results and
also a new and more transparent derivation of the theory of
that letter. In the present paper we report both of these
developments.

In ref 1 the analysis was tied to the length scale (or volume
scale) that resolved distinct physical states in coordinate space
alonerather than in phase space (where the appropriate length
scale is Planck’s constant). The problem only arises when one
is forced to use a model that constitutes a renormalized version
of a system, and when that model requires the evaluation of
only the part of thetotal system entropy that refers to coordinate
space alone. The problem is also widespread, appearing, in
various forms, in such diverse systems as polymers, micro-
emulsions, and nucleating systems. It also emerges in the
constant pressure ensemble (at least the length scale problem
emerges), even though entropy is not explicitly involved and a
renormalized version may not be at issue.12-14 Previous work

has shown that the relevant volume scale depends sensitively
on the model.15

In CNT the model in question is based on the “capillarity
approximation,”3 (i.e., a cluster orembryoof the nucleating
phase is regarded as a spherical liquid drop of uniform density
equal to that of the bulk liquid and having a sharply defined
interface with the surrounding metastable mother phase, which,
in the case of a vapor, is regarded as an ideal gas). The surface
tension associated with this interface is also chosen to be that
of the bulk liquid. In ref 1, attention was focused on the
nucleation of drops in a supersaturated vapor, and this focus
will be continued in the present paper.

2. Partition Function of a Single Model Drop in a Vapor
and Origin of the Volume Scale

Our ultimate goal is to derive an equilibrium distribution of
clusters (drops) to be used in an application of the principle of
detailed balance. In CNT this distribution proves to be16

whereNn is the equilibrium number of clusters consisting of n
molecules,Nvap is the number of single molecules in the vapor,

Nn ) [Nvap exp{- 1
kT

[n(µliq - µvap) + γan]}] (1)
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µvap is the chemical potential of single molecules in that vapor,
µliq is the chemical potential of a molecule as if it were part of
a bulk liquid at the pressureP outside of the drop,γ is the
surface tension of the bulk liquid,an is the surface area of the
drop assumed to have the uniform density of the bulk liquid,k
is the Boltzmann constant, andT is the temperature. Both
experimental and theoretical considerations have suggested that
this expression should be modified to the form

whereS is the degree of supersaturation of the vapor given by

where againP is the pressure of the vapor andPsat is the
saturation pressure of the vapor at the temperature in question.
The appearance ofS in eq 2 is the so-called 1/S correction7-9

(whose origin is rooted in several considerations,9,17but without
which the equilibrium distribution would not satisfy the law of
mass action9). The factorR in eq 2 is due to the so-called
replacement free energy2-6 (closely connected to the transla-
tional degrees of freedom of the cluster) and is independent of
S. A major goal of the present paper is the evaluation ofR by
the determination of a correct translational volume scale.

If we consider a spherical drop ofn molecules at rest, its
partition function within the canonical ensemble and within the
confines of the capillarity approximation, may be expressed as

whereVn is the volume of the drop of uniform density equal to
that of the bulk liquid. The expression in the numerator of the
exponent is the Helmholtz free energy of the drop and is strictly
correct only for a fully incompressible drop.18,19 However, it
is a reasonable approximation for drops having the small
compressibility of a normal liquid. Because such a drop is to
be used as a model of a cluster or embryo of the nucleating
liquid phase, we will be interested in the full canonical ensemble
partition function of a system of volumeV consisting of an ideal
gas of vapor molecules, at pressureP and temperatureT,
containing the drop (cluster).qn, defined by eq 1, is then
regarded as the partition function of a stationary cluster, and it
is necessary to evaluate a kind ofconfigurational partition
function (configuration integral) for the cluster before the full
partition function of the system can be specified. The config-
uration integral of a molecule is usually obtained by integrating
the center of massof the molecule overV, but in the case of
the model drop the location of the center of mass is unknown
since both that center and the volume of the drop are fluctuating.
To proceed, therefore, we can integrate the geometric center of
the drop overV (even though the fluctuating center of mass
may not lie at that center) and then adjust for the consequences.
The configuration integral derived in this manner may thus be
referred to as apseudoconfiguration integral. As indicated, it
is convenient to use it in the evaluation of the full partition
function, and to make the necessary corrections as we go along.

However, before proceeding further, it may be instructive to
view the fundamental problem in another (more general) way.
The CNT (capillarity approximation) model of the cluster
represents a coarse grained, highly renormalized version of the
actual system. Ideally (as in the case of almost all such models),
the goal is to integrate over certain molecular degrees of freedom
(usually, those that are most difficult to address by rigorous

mathematical means) so as to arrive at a partly averaged system
whose remaining degrees of freedom are more amenable to
rigorous analysis. Unfortunately, the initial integration, aimed
at the elimination, from explicit consideration, of difficult
degrees of freedom, cannot usually be accomplished in a
rigorous manner. Consequently, one is forced into an educated
guess of the result of that integration, were it in fact to be carried
out. The model that one is then presented with,after the fact,
may then contain inaccuracies whose quantitative effects may
be difficult to assess. Nevertheless, it may be possible to take
steps, based on physical reasoning, to minimize this inaccuracy,
subject to whatever subsidiary information is available. The
present paper forms an example of this procedure.

Returning to the evaluation of the model partition function,
we consider Figure 1. Figure 1a is a schematic of the drop, in
a fixed position, embedded in a surrounding ideal vapor. The
total volume and total number of molecules in the system are
N and V, respectively. The open circles within the spherical
drop of volumeVn represent then molecules in the drop, while
the filled circles inV - Vn, the remaining volume of the system,
represent theN - n ideal vapor molecules in that volume.
Because the molecules in the surrounding ideal vapor are
decoupled from those in the drop, the partition function of the
configuration shown in Figure 1a can be written in the following
form

The 0 inQn(0) indicates that the partition function corresponds
to a configuration in which the center of the drop is fixed at an
origin andqn(Vn) is simply the drop partition function presented
in eq 4. The second factor on the right is the partition function
of the ideal vapor containingN - n molecules in the volumeV
- Vn, and the id in the superscript indicates “ideal”. The product
form in the middle of eq 5 results from the decoupling of the
molecules of the vapor from those of the drop, and the product
at the extreme right is simply a notational contraction.

In the next step we begin to allow the system to assume more
than one configuration, by allowing additional positions for the
center of the drop (i.e., we begin the implicit evaluation of the
configuration integral). In this context, Figure 1b illustrates a
configuration in which the center of the drop has been displaced
through a vector distancedλ. The original location in Figure
1a is shown by the dashed outline. The important conclusion

Nn ) R
S[Nvap exp{- 1

kT
[n(µliq - µvap) + γan]}] (2)

S) P/Psat (3)

qn ) exp{- 1
kT

(nµliq + γan - PVn)} (4)

Figure 1. (a) Drop of volumeVn, containingn molecules (open circles),
embedded in an ideal gas of volumeV - Vn, and consisting ofN-n
molecules (filled circles). (b) Drop profile (continuous circle) with center
displaced bydλ. Dashed circle represents drop in original location.
Drop molecules are in the lens shaped region created by the overlap of
the original and displaced profiles. Nonoverlapped volume is denoted
by du.

Qn(0) ) qn(Vn) QN-n
id (V - Vn) ≡ qnQN-n

id (5)
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to be gleaned from Figure 1b is that the movement of the model
drop (by moving its center) does not necessarily lead to
molecularconfigurations that were not possible in Figure 1a.
For example, the configuration of the molecules in the drop,
shown in Figure 1b, such that all drop molecules lie in the lens
shaped region of overlap between the original and the displaced
outline of the drop, is a possible configuration of the same
molecules in Figure 1a. Thus, at least as far as the drop is
concerned, the configuration of drop molecules in Figure 1b
does not represent a new physical state. To have a new physical
state there would have to beat least onedrop molecule in the
nonoverlapped volume designated as du in Figure 1b. Such a
configuration is not possible in Figure 1a. A similar consid-
eration (not addressed in ref 1) applies to the molecules of the
surrounding ideal vapor, and we will address it below. For the
moment we concentrate on the drop.

To represent the augmented partition function that includes
the new configuration, both factors in eq 5 must be modified,
but the modifications must avoid counting the redundant
configurations. This means that in considering the augmented
partition function of the drop, for example, the addition toqn is
not merely anotherqn centered at the new location of the drop.
Instead, the addition toqn should include only new configura-
tions in which there is at least one drop molecule in the
nonoverlapped volume du. Denote byq′n the partition function
for the drop “compressed” into the lens shaped form appearing
in Figure 1b. Since the compression is really differential (du
is a differential volume),q′n clearly is given by

where the minus sign appears because du is positive. q′n is the
partition function of the redundant configurations so that the
required addition to the partition function, less this redundancy,
is qn - q′n. Substituting eq 6 into this expression gives, for the
addition,

so that the augmented partition function becomes

This is the factor that must replaceqn in eq 5 if the partition
function is to include the displaced position of the drop.

We still have to deal withQN-n
id the second factor on the

right of eq 5 that was not addressed in ref 1. When the drop is
displaced, and even if its molecules are in a configuration within
the lens shaped overlap region, the configuration of thetotal
system, vapor plus drop, will not be redundant as long as there
is at least one vapor molecule within the nonoverlapped region
to theleft of the lens, since such a position for a vapor molecule
was impossible in the original configuration in Figure 1a. Thus,
in order for the configuration to be fully redundant, the
configurations of the vapor molecules must lie outside of the
composite figure generated by the two spheres in Figure 1b.
Thus, like the drop, the volume of the vapor must be compressed
in order to generate a redundant configuration....but this time,
from the originalV - Vn to V - Vn - du. Then the argument
for the augmented second factor proceeds in exactly the manner
of the argument for the first factor and leads to the result

The substitution of eqs 8 and 9 forqn andQN-n
id on the right of

eq 5 then yields for the augmented partition function the result

corresponding to translational motion restricted to the volume
du.

We can write

wherePn and P have the dimensions of pressure and where
indeed, from the usual relations in the canonical ensemble for
a system in the thermodynamic limit,P must be the pressure
of the surrounding vapor.

Pn, however, demands further discussion. When the drop is
small enough, surface as well as volume work must be
considered. Indeed, there may be other kinds of work that
depend on “shape” or deformation. To simplify the discussion,
consider a case in which the only additional work is surface
work. Then, a simple analysis of the canonical ensemble for a
system (small enough so that surface terms are important) shows
that pressure is specified by

and that surface tension is given by

On the other hand, if we impose a geometrical condition on
the drop such that the surface areaan is a known function of
Vn, (e.g., if the drop is forced to remain spherical, as in CNT)
then we can write

wherePn is the quantity appearing in eq 11. The substitution
of eqs 13 and 14 into eq 15 yields

If the drop is constrained to remain spherical, then

q′n ) qn -
∂qn

∂Vn
du (6)

qn - q′n )
∂qn

∂Vn
du (7)

qn +
∂qn

∂Vn
du (8)

QN-n
id +

∂QN-n
id

∂(V - Vn)
du (9)

Qn (du) ) [qn +
∂qn

∂Vn
du][QN-n

id +
∂QN-n

id

∂(V - Vn)
du] (10)

∂qn

∂Vn
) qn

∂ ln qn

∂Vn
) qn

Pn

kT
(11)

∂QN-n
id

∂ (V - Vn)
) QN-n

id
∂ ln QN-n

id

∂ (V - Vn)
) QN-n

id P
kT

(12)

pn ) kT (∂ ln qn

∂Vn
)

T,n,an

(13)

γ ) -kT (∂ ln qn

∂an
)

T,n,Vn

(14)

kT (∂ ln qn

∂Vn
)

T,n
) kT(∂ ln qn

∂Vn
)

T,n,an

+

kT(∂ ln qn

∂an
)

T,n,Vn

(∂an

∂Vn
)

T,n
) Pn (15)

Pn ) pn - γ (∂an

∂Vn
)

T,n
(16)

(∂an

∂Vn
)

T,n
) 2

r
(17)
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wherer is its radius, so that substitution of eq 17 into eq 16
yields

which is identical to the Laplace equation.20 This identity shows
thatpn is the pressureinsideof the drop, whilePn is the pressure
P outsideof the drop. There are several caveats. One refers
to the fact that the canonical ensemble relations, eqs 13 and
14, areequilibrium relations. Thus, in the absence of a carrier
gas,Pn andP should be the vapor pressure of the drop, or in
the presence of a carrier gas of partial pressureP°, Pn andP
should equal the vapor pressure of the drop plusP°. But if the
surrounding vapor is supersaturated, only the drop that serves
as a condensation nucleus (i.e., the drop that satisfies the Kelvin
relation,21,22can be in (unstable) equilibrium with the vapor and
havePn given by its vapor pressure augmented byP°. In a
saturated vapor the relation applies trivially to a drop of infinite
radius. Anotherimportantcaveat relates to the fact that there
can be circumstances under which eq 18 maynot be valid! We
discuss this issue in the following section.

It is useful to continue this line of reasoning concerningPn

by returning to Figure 1 which involves a compression of the
drop from a spherical form to the lens shaped region of overlap
corresponding to the initial and displaced positions of the drop.
As long as the displacement is infinitesimal (i.e.,dλ) it is a
simple matter of geometry to show that the changes in volume
and surface area of the drop during such a compression are given
by

so that the ratio of the first to the second differential is once
again 2/r, as in eq 17. In this case the constraint that relates
the change in surface area to volume is the required transforma-
tion of the drop from a sphere to a lens shape. In any event,
the result is again eq 18 andPn is again seen to be the external
pressure. This simple result, although intuitively satisfying, is
somewhat misleading for reasons that are elaborated in the
following section. Thus for the time being we do not setPn )
P, even for the nucleus, but continue to refer to it asPn without
attempting to establish its precise physical meaning.

The substitution of eqs 11 and 12 into eq 10, and expansion
of the result to terms linear in du, yields

We can now repeat the process of drop displacement, and some
thought will show that in each displacement there will be an
augmentation of the partition function exactly equal to the
second term on the right of eq 20. If the process of displacement
is continued until the entire volumeV is covered, the resulting
partition function will then contain a sum of such terms that
represents an integral overV such that, in place of eq 20, we
obtain

where in the last step we have retained only the term inV
because of its overwhelming macroscopic size. Equation 21 is

the partition function of a single drop of sizen, surrounded by
an ideal vapor of pressureP, in the volumeV. Thepseudocon-
figuration integral has been evaluated implicitly and is repre-
sented by the factorV. However, because of the redundancy,
illustrated by the discussion concerning Figure 1, its magnitude
must be reduced (i.e., the redundancy in the enumeration of
configurations must be removed). In eq 21, we see that in fact
this reduction is accomplished through division by the volume
ϑn ) kT/(Pn + P). It is as if the center of the drop was restricted
to a simple cubic lattice of sites (with lattice parameter (ϑn)1/3),
instead of being allowed to move continuously throughoutV.

SinceQN-n
id refers to an ideal gas, we can write it explicitly

as

where, in the second step, we have taken advantage of the fact
that Vn , V, and in the last step we have used the equation of
state of an ideal gas.Λ is the thermal deBroglie wavelength
of a single molecule. The substitution of this result into eq 21
yields, finally, for the single drop partition function, the
expression

In closing this section it is appropriate to reiterate that we have
now identified the volume scale asϑN ) kT/(Pn + P), but that
the problem remains the explicit evaluation ofPN.

3. Determination of Pn: Effect of the Model

The identification ofPn (or ϑn) brings to the fore the central
role played by themodel. In the CNT a physical cluster is
represented by a liquid drop (capillarity approximation), but still
the model is not clear about many specifics. For example, in
eq 1, the exponent contains the free energy of anincompressible
drop, but it is never specifically stated that the model drop is
incompressible. In fact, if it were, it would not represent a real
drop since a real dropis compressible! However, since its
compressibility is very small, the free energy in the exponent
can be regarded as an excellent approximation, so that the issue
of “compressible versus incompressible” never arises. Never-
theless, we can inquire into how the translational free energy
of the drop is affected if we do insist that it iscompletely
incompressible. In such a case, as long as the drop is required
to remain spherical as is assumed in the CNT, the center of
mass would have to coincide with the geometric center of the
drop. It can be demonstrated that the immediate effect is to set
ϑn equal to the cube of the thermal deBroglie wavelength of a
particle having the mass of the drop. Then it can be shown
that, in essence, this leads to the exceedingly large value ofR
determined by Lothe and Pound.2 Since both experiment and
the popular consensus deny this large value, a model in which
the drop is completely incompressible does not seem satisfac-
tory.

If we then allow the drop to be compressible and to have the
compressibility of the bulk liquid, the drop volume must be
allowed to fluctuate. The fluctuation is at fixed n (not fixed
aVerage n) so that the drop is not necessarily inmaterial
equilibrium with the surrounding vapor. The easiest way to

Pn ) pn - 2γ
r

(18)

dVn ) -πr2|dλ|, dan ) -2πr|dλ| (19)

Qn (du) ) qnQN-n
id + qnQN-n

id [Pn

kT
+ P

kT]du (20)

Qn (V) ) qnQN-n
id + qnQN-n

id [Pn

kT
+ P

kT] V ≈

qnQN-n
id [ V

kT/(Pn + P)] (21)

QN-n
id (V - Vn) )

(V - Vn)
N-n

Λ3(N-n) (N - n)!
=

VN-n

Λ3(N-n) (N - n)!
e-(N-n)Vn/V ) QN-n

id (V ) e-PVn/kT (22)

Qn (V) ) QN-n
id (V) [ V

kT/(Pn + P)]qn(Vn)e
-PVn/kT (23)
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visualize this situation is to imagine that the drop is contained
within a closed volume delineated by an abstract membrane
having no elastic tension. The membrane does not allow the
mixing of molecules of the surrounding vapor with those of
the drop (i.e., it is impermeable to both drop and vapor
molecules). Considering, in the interest of simplicity, the case
in which carrier gas is absent, ifP the pressure of the vapor is
less than the vapor pressure of the drop within the membrane,
insidethe membrane molecules will “evaporate” from that drop
so that, in a crude sense (since the system is not in the
thermodynamic limit), inside the membrane vapor and asmaller
drop will coexist andVn will have increased. Because of surface
tension, the vapor pressure of the smaller drop will exceed that
of the original drop, and evaporation will continue until only
vapor remains inside the membrane, and this vapor will expand
until its pressure equals the external pressureP. Vn will then
be that of a vapor rather than a liquid (contrary to the
requirements of the CNT model).

The preferred method for dealing with detailed balance in
vapor phase nucleation theory (the so-calledkinetic method17)
involves reference to the equilibrium distribution of clusters in
the saturatedvapor. In deference to the importance of this
procedure we will continue the immediate discussion by
considering drops in such a saturated vapor, but the conclusion
can easily be demonstrated for a vapor that is either unsaturated
or supersaturated. IfP is the pressure in the saturated vapor
(i.e., the vapor pressure of the bulk liquid, then any drop of
less than infinite radius will exhibit a vapor pressure that exceeds
P). Thus the argument of the preceding paragraph will apply
to drops of any size and each will evolve toward a vapor as a
final state, thereby violating a requirement of the CNT model.

The only way to ensure this requirement would involve the
application of additional constraints to the drop so that the
fluctuation of its volume remained within the limits typical of
the bulk liquid. Such constraints would provide another means
for the drop to exchange work with its environment (i.e., work
could be done against the constraints). This would generate
additional terms in eq 15 because forces in addition topn and
γ would be involved and would also involve these forces. The
simple Laplace relation would be compromised. This constitutes
the elaboration of the second caveat mentioned below eq 19.
The argument of the above few paragraphs is of course closely
connected to the Kelvin relation21,22 that specifies the vapor
pressure of a drop. However that relation is usually applied to
a drop that can exchange molecules withall of the surrounding
vapor. Since our drop is aclosedsystem in which n must
remain constant, some qualifying explanation beyond simple
mention of the Kelvin relation seems necessary.

The single exception to the above scenario occurs in the case
of very large, essentially infinite, drops. In that case the vapor
pressure of the drop would be that of the bulk liquid (i.e., the
pressure of the saturated vapor) so that the drop would have no
tendency to expand, and additional constraints would be
unnecessary. Then the Laplace relation would still hold and
Pn would equalP.

In the analysis surrounding Figure 1, the choice ofVn was
dictated by the density of the bulk liquid; the CNT model
specifically chooses a cluster of fixed volume given byVn )
nFliq whereFliq is the density of that bulk liquid. In a real drop
Vn would fluctuate, and the choice ofVn in CNT is therefore an
aVeragevolume that we are forced to use within the framework
of the model. The relative magnitude of the fluctuation should
be small as it is in the bulk liquid, and it should be controlled
by the isothermal compressibility of that liquid at its normal

density. In view of the previous discussion, this situation may
have to be conditioned by the application of constraints that
force the drop to have this value of compressibility. Of course,
these constraints enter intoqn. It is actually possible to
determinePn(Vn), whereVn is the volume required by CNT,
through an analysis of the fluctuation of a compressible drop.

This determination is facilitated by the introduction of an
equation similar to eq 5 and differing from it in thatqn is
replaced by dqn given by

The meaning of dqn is obvious. It is the difference betweenqn

for a drop of volumeVn and one of volumeVn + dVn. As such,
it is a partition function that includes only those molecular
configurations found inVn + dVn that are not found in Vn.
Clearly, in the larger volume, all of the configurations in the
smaller volume could be realized as well as additional configu-
rations that are characterized by havingat leastone molecule
in dVn. This molecule has been termed the “shell molecule”
and has now been discussed in a variety of contexts.13,14,23,24It
allows one to avoid redundant counting of configurations. It
is the way in which the volume of the drop must be defined in
terms of the degrees of freedom of itsmoleculesrather than by
the volume of some container in which it resides.25,26

Since the drop is fluctuating, its full partition function, with
its center fixed, must involve a sum over all volumesVn, and
the partition function of the full system, vapor plus drop, must
also involve this sum. Atone particular volume, the full
partition function is given by eq 5 withqn replaced by dqn and,
so for the sum over all volumes, the partition function is given
by

where we have used eq 11. Substituting eq 22 gives

The integral in this equation is the partition function for a
constant pressure ensemblein which the volume scale iskT/
Pn. This ensemble and its volume scale, especially for the case
of a small system, has recently been the subject of considerable
attention.13-15 For the purposes of CNT, we need to determine
Pn(Vn) whereVn is the volume dictated by the density of the
bulk liquid, so thatVn is the average volume of the fluctuating
drop. For a macroscopic drop, where the mode and the mean
can be considered equal, this average could be obtained by
determining the value ofVn that maximizes the integrand in eq
26. For a small drop, this procedure begins to lose accuracy,
but usually it remains an excellent approximation down to
extremely small systems. For this reason, and because of the
simple physically satisfying result that it yields, we adopt it
here.

Then, differentiating the integrand with respect toVn, and
setting the result equal to zero to determine the maximum, yields
the relation

dqn ) qn (Vn + dVn) - qn (Vn) )
∂qn

∂Vn
dVn ) qn

∂ ln qn

∂Vn
dVn

(24)

Qn(0) ) ∫Vn
dqn QN-n

id (V - Vn) ) ∫Vn

∂ ln qn

∂ Vn
qnQN-n

id (V -

Vn) dVn ) ∫Vn

Pn

kT
qnQN-n

id (V - Vn) dVn (25)

Qn(0) ) QN-n
id (V) ∫Vn

Pn(Vn)

kT
qn(Vn) e-PVn/kTdVn (26)
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where in the last step we have used eq 11. The left side of eq
27 can be expressed as

whereκ ) -(∂Vn /∂Pn)T/Vn is the isothermal compressibility of
the drop. The substitution of eq 28 into eq 27 yields

The physically meaningful root of this quadratic equation is

This simple result is remarkable in many respects. It is general
in the sense that it is valid, independent of whether constraints
of the sort discussed above (required in order to maintain the
drop at the uniform average density characteristic of the bulk
liquid) are present. Furthermore, for a very large drop,κVn

would be large enough so that the second term under the square
root sign could be neglected to yield the result,

This confirms the conclusion arrived at in the qualitative
discussion at the beginning of this section, namely thatPn would
equal the external pressure, and the simple Laplace relation
would hold for a large drop.

In the opposite extreme, withκ and density still typical of a
liquid, the second term under the square root sign dominates
so that, to a high degree of approximation,

This is also in accord with the qualitative discussion at the
beginning of this section (of the caveat of the preceding section),
and that discussion therefore explains the physical basis of eqs
31 and 32. Finally, if the “drop” consisted of vapor so thatκ

was large, the second term would again be negligible andPn

would again be equal toP.
The remarkable (and useful) aspect of the fluctuation analysis

is that it has allowed us to treat the effects of the constraining
forces (when such forces are present), to the degree necessary
for the determination ofPn, without having to specify the precise
nature of those forces! The minimum information required is
the value of an assumed (uniform) average density and that of
the correspondingκ.

Equation 32 requires

where, in the second step, we have used the fact thatPn specified
by eq 32 is much larger thanP. The quantityσn is the variance
of the volume fluctuation in the standard formulation of the
constant pressure ensemble.27 Thus in the case of the liquid
drop, eq 33 shows that the volume scale is the variance of the
volume fluctuation of the drop or, more simply,the Volume of

fluctuation. It is as if there is anuncertainty principle, in
coordinate spacealone, such that the drop cannot be located
more precisely than within its volume of fluctuation.

4. An Assembly of Drops

We now turn our attention to an assembly of drops of varying
size, and attempt to derive the equilibrium size distributionNn

such that there areNn drops containingn molecules. In the
interest of generality, we do not restrict the argument to the
cases in which the vapor is either undersaturated or at most
saturated, but allow supersaturation as well. However, in the
latter case the vapor must be subject to an implicit formal
constraint (whose nature we need not specify) that preserves
supersaturation. If, in the development of the full theory of
nucleation, the preferredkinetic methodis used, the necessary
equilibrium distribution, at saturation, can be extracted as a
special case of the distribution derived here.

For the purpose of deriving the equilibrium distribution, eq
23 must be replaced by the partition function for the assembly.
The first step in this process is the replacement of the partition
function for the ideal vapor in eq 22 with the corresponding
function appropriate to the multidrop system. Thus denoting
the number of single molecules byN1 we write

where in the last step, the same expansion was used as in the
last two steps of eq 22. Assuming that the drops (clusters) do
not interact with one another, we can then write for the complete
partition function of the drops-vapor system in a particular
distributionNn, the expression

where we have made use of both eqs 21 and 34. The full
partition function, including all distributions, is then

where the sums are over all distributionsNn such that

The equilibrium distribution is found in the usual manner by

-kT
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finding the maximum term in the sum of eq 36 subject to the
conservation condition, eq 37. The result is

In these equations,λ is a Lagrange multiplier andµvap is the
chemical potential of the vapor. The last equality in the second
equation of eq 39 follows upon recognition of the standard form
for the chemical potential of an ideal gas. The substitution of
the expression forλ in eq 39 into eq 38, together with the
expression forqn from eq 4, yields

NeglectingP, in view of eq 32, while making use of eq 33 and
multiplying and dividing the right side of eq 41 byNvap, gives
rise to

whereFvap
sat is the density of the saturated vapor and we have

used the relations,
Nvap ) SNvap

sat andFvap
sat ) Nvap

sat/V, whereNvap
sat is the number of

single molecules in the saturated vapor. Comparison of eq 41
with eq 2 shows that

and that 1/Sappears naturally. For typical liquids, the value of
R specified by eq 42 is of the order of 104, as experiment
suggests, rather than the 1017 - 1018 suggested in the original
work of Lothe and Pound.2 Bell and Strey28 have recently noted
that the use ofR as specified by eq 42 improves the agreement
between CNT and experiment, insofar as the temperature
dependence of the rate of nucleation is concerned.

If, for the implementation of thekinetic method, the vapor
was justsaturated, eq 41 would still apply, butSwould be set
to unity. Then S would reappear, in the rate theory, through
the consideration of the ratio of the condensation coefficients
in the supersaturated and saturated vapors, respectively.

There is one other question that deserves comment. This is
the so-called “internal consistency” requirement10,11 in which
Nn should reduce toNvap whenn ) 1. It will be noticed that,
from the beginning, the theory treats single molecules and
clusters differently. In fact eqs 31 and 32 provide separate
expressions forNn andN1. Thus, in fact, thereis no requirement
for internal consistency! Nevertheless, it can be shown1 that
eq 42 is exactly internally consistent for some simple free
volume models of the liquid, andalmost internally consistent
for most typical liquids. This proof is presented in ref 1 and
will not be repeated here.

5. Concluding Remarks

Although the explicit goal of the present paper is the
resolution of the “replacement free energy” controversy, there

is an implicit underlying theme that deserves comment. This
concerns the volume scaleϑn (or the length scaleϑn

1/3). This
scale is required for the proper treatment of the translational
free energy of a model cluster. In a fully molecular theory, the
problem wouldneVer arise, since a clean separation of trans-
lational and internal degrees of freedom would be effected. As
indicated in the opening section, it is the representation of the
cluster by a coarse-grained renormalized model that leads to
the problem. By its nature, the model requires one to evaluate
apart of the entropy (or free energy) of the system incoordinate
space alone and not in the fullphasespace of the system. In
the full phase space where the full physical entropy of the system
is defined, the length scale is constant and well-known (i.e., it
is Planck’s constant). In coordinate space, the length scale for
the relevantpart of the entropy proves to be extremely sensitive
to the model. We have already mentioned this in connection
with a completely incompressible drop. In another case28 treated
almost 30 years ago, the drop was modeled as encapsulated in
a rigid, impermeable spherical container centered on its center
of mass, thereby isolating it entirely from the surrounding vapor.
In this case, the length scale proved to be the distance of
fluctuation of the center of mass of a similar droplet confined
to a rigid spherical container in which the center of mass and
the center of the container werenot required to coincide. For
drops in the size range of typical condensation embryos, this
length proved to be of magnitude similar to that of the length
derived in the present paper. However, for large drops it
approached zero, leading to an infinite translational free energy.
This was a direct consequence of the isolation of the drop from
the surrounding vapor. The length scale of the present paper
does not collapse to zero as the drop becomes large, but assumes
a finite value determined by the other limiting value of the root,
eq 30, namely eq 31.This is a direct consequence of the fact
that the model drop is coupled to the vapor.

However, it should be emphasized that one is at liberty to
choose from a variety of models. The fundamental question is
“how accurately does the aVeraging, implicit in the model,
conform to the desired integration oVer the difficult degrees of
freedom that one wishes to aVoid?” For example, in the
capillarity approximation, the drop is assumed to be incom-
pressible for the purpose of representing its free energy, and
this approximation is acceptable since the compressibilities of
real liquids are quite small. At the same time, the volume of a
real drop (cluster) is known to fluctuate. Although, this
fluctuation is also small, it cannot be ignoredin the eValuation
of the redundancy that is compensated by theVolume scale
connected to the fluctuation.To ignore it would be equivalent
to including the redundancy in the theory and would lead to an
unacceptably large replacement free energy factor!

Another point should be made. This is the fact that it is not
strictly correct to define the nucleus as thestationary drop in
unstable equilibrium with the supersaturated vapor, as is
conventional in nucleation theory. After all, the translational
free energy is part of the work of formation of the drop. This
free energy is in essence given by the negative of the logarithm
of the preexponential factor in the expression forNn and itself
depends onn. Thus, the top of the free energy barrier, and the
size of the nucleus, is determined in part by these free energy
contributions. In most cases the effect is small vis a vis the
determination of the critical supersaturation, but it is rigorously
present. Despite this, it can be shown, by a fully molecular
analysis24 of the nucleation process, that the main effect of
translation is to scale the nucleation rate by the volume of the
system.
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We have shown that the length scale itself may depend onn
and also on the thermodynamic state of the complete system. It
is important to recognize this because of its ramifications in
fields outside of nucleation. In microemulsions, for example,
the importance of translational or mixing entropy,15,29 in
connection with models involving renormalization, is beginning
to receive attention, although it was not always so, the argument
having been that the length scale was independent of the
macrostate so that the associatedconstant mixing entropy
canceled out of the problem. In the field of polymer statistics
where models based on renormalization are frequently used30

the problem, for the most part, has been swept under the carpet
for the same reason.

In closing, it should also be noted that there are situations in
which little damage results from the neglect of length scale
considerations. These situations are those in which the problem
(loosely speaking) depends linearly on the mixing entropy as
is the case in the determination of phase diagrams for micro-
emulsions. But there are cases in which the problem depends
exponentially on the mixing or translational entropy (or free
energy). Such is the case in the formula forNn in nucleation
theory. Here, an enormous variation can be generated by the
use of different length scales; witness the difference between
the replacement free energy factors of 104 and 1018 that can be
generated.

Finally, we call attention to the close relation that these
problems have with the length scale problem of the constant
pressure ensemble, even though translational entropy is not the
explicit center of focus in that case.
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