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The replacement free energy correction, for vapor phase nucleation, in the classical theory of nucleation
(CNT), is investigated within the confines of the renormalized representation of the molecular system implicit

in the model, based on the capillarity approximation adopted by CNT. The replacement free energy is
associated with the translational degrees of freedom of the clusters that serve as embryos for the formation
of drops, and it is shown that, unless extreme care is exercised, the evaluation of this contribution to the free
energy can involve a redundant counting of molecular configurations that can lead to a predicted nucleation
rate in error by many orders of magnitude. It is demonstrated that the problem arises because of the use of
a coarse grained renormalized version of the actual system and that the correction can be extremely sensitive
to the type of renormalization (model) employed. In the case of CNT, in particular, error can arise from the
fact that the drop used to model the cluster cannot be located more accurately than within the fluctuation of
its volume. This fluctuation, in effect, generates a lattice whose sites the drop is restricted to occupy and
whose lattice parameter is the cube root of the volume of fluctuation. This denial of accessibility of the
continuum volume to the drop eliminates redundant counting. The form for the replacement free energy
factor is derived, discussions of various subtle issues are presented, and similar problems are mentioned in
connection with renormalized versions of molecular systems in other contexts (e.g., in the cases of
microemulsions and polymers, and even in cases such as that of the constant pressure ensemble) where
renormalization does not play a role.

1. Background has shown that the relevant volume scale depends sensitively
] ] ) _on the model?

Recently, the authors published a letter in Physical Review |y cNT the model in question is based on the “capillarity
Letters! which dealt with the role in the classical theory of approximation,? (i.e., a cluster olembryoof the nucleating
nucleation (CNT), of the so-called “length scale for configu- phase is regarded as a spherical liquid drop of uniform density
rational entropy” in the specification of (1) the replace_ment free equal to that of the bulk liquid and having a sharply defined
energy?~® (2) the 16 factor/™® and (3) so-called interal  interface with the surrounding metastable mother phase, which,
consistency™** Now we have obtained additional results and i, the case of a vapor, is regarded as an ideal gas). The surface
also a new and more transparent derivation of the theory of tensjon associated with this interface is also chosen to be that
that letter. In the present paper we report both of these of the bulk liquid. In ref 1, attention was focused on the
developments. nucleation of drops in a supersaturated vapor, and this focus

In ref 1 the analysis was tied to the length scale (or volume will be continued in the present paper.
scale) that resolved distinct physical states in coordinate space
alonerather than in phase space (where the appropriate length2. Partition Function of a Single Model Drop in a Vapor
scale is Planck’s constant). The problem only arises when oneand Origin of the Volume Scale
Is forced to use a model that constitutes a renormalized v_ersion Our ultimate goal is to derive an equilibrium distribution of
of a system, and when that model requires the evaluation of clusters (drops) to be used in an application of the principle of

only the part of theotal system entropy that refers to coordinate detailed balance. In CNT this distribution proves td%e
space alone. The problem is also widespread, appearing, in

various forms, in such diverse systems as polymers, micro- 1

emulsions, and nucleating systems. It also emerges in the N, = [NvapeXF{_ﬁ'[n(/‘liq _“vap) + Van]}] (1)
constant pressure ensemble (at least the length scale problem

emerges), even though entropy is not explicitly involved and a whereN, is the equilibrium number of clusters consisting of n
renormalized version may not be at isséel* Previous work moleculesNyap is the number of single molecules in the vapor,
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Uvapis the chemical potential of single molecules in that vapor, [g
iq is the chemical potential of a molecule as if it were part of o N-n @
a bulk liquid at the pressurP outside of the dropy is the o o
surface tension of the bulk liquidy, is the surface area of the o |® b
drop assumed to have the uniform density of the bulk ligkid, U © YA
is the Boltzmann constant, anf is the temperature. Both ® ¢ N @
experimental and theoretical considerations have suggested tha N
this expression should be modified to the form @ @ Vevy
_ 1 \\\ ”/'

N, = E[Nvap eXF{ - ﬁ-[n(:uliq - l"vap) + Van]}] (2 a e ®

whereSis the degree of supersaturation of the vapor given by ® ® V-va
S= PIPgy ®) Figure 1. (a) Drop of volumey,, containingh molecules (open circles),
embedded in an ideal gas of volure— v,, and consisting oN—n

where againP is the pressure of the vapor amiy is the molecules (filled circles). (b) Drop profile (continuous circle) with center
saturation pressure of the vapor at the temperature in questiondisplaced bydA. Dashed circle represents drop in original location.
The appearance @in eq 2 is the so-called $/correctiori—° Drop molecules are in the lens shaped region created by the overlap of
(whose origin is rooted in several consideratid&put without Lr;ed%rlglnal and displaced profiles. Nonoverlapped volume is denoted

which the equilibrium distribution would not satisfy the law of
mass actio). The factorR in eq 2 is due to the so-called
replacement free ener§jy (closely connected to the transla-
tional degrees of freedom of the cluster) and is independent of
S A major goal of the present paper is the evaluatioR dify
the determination of a correct translational volume scale.

If we consider a spherical drop of molecules at rest, its
partition function within the canonical ensemble and within the
confines of the capillarity approximation, may be expressed as

mathematical means) so as to arrive at a partly averaged system
whose remaining degrees of freedom are more amenable to
rigorous analysis. Unfortunately, the initial integration, aimed
at the elimination, from explicit consideration, of difficult
degrees of freedom, cannot usually be accomplished in a
rigorous manner. Consequently, one is forced into an educated
guess of the result of that integration, were it in fact to be carried
out. The model that one is then presented watter the fact

1 may then contain inaccuracies whose quantitative effects may
g,= ex;{— ﬁ.(n/t”q +ya, — Pun)} 4) be difficult to assess. Nevertheless, it may be possible to take

steps, based on physical reasoning, to minimize this inaccuracy,

Whereun is the volume of the drop of uniform density equa| to SUbjeCt to whatever SUbSidiary information is available. The
that of the bulk liquid. The expression in the numerator of the Present paper forms an example of this procedure.
exponent is the Helmholtz free energy of the drop and is strictly ~ Returning to the evaluation of the model partition function,
correct only for a fully incompressible drdpi® However, it we consider Figure 1. Figure la is a schematic of the drop, in
is a reasonable approximation for drops having the small a fixed pOSition, embedded in a SUrrOUnding ideal vapor. The
compressibility of a normal liquid. Because such a drop is to total volume and total number of molecules in the system are
be used as a model of a cluster or embryo of the nucleatingN andV, respectively. The open circles within the spherical
liquid phase, we will be interested in the full canonical ensemble drop of volumeu, represent the molecules in the drop, while
partition function of a system of voluméconsisting of anideal  the filled circles inV — vy, the remaining volume of the system,
gas of vapor m0|ecu|esy at pressd?eand temperaturér, represent the\ — n ideal vapor molecules in that volume.
containing the drop (cluster)q, defined by eq 1, is then Because the molecules in the surrounding ideal vapor are
regarded as the partition function of a stationary cluster, and it decoupled from those in the drop, the partition function of the
is necessary to evaluate a kind eénfigurational partition configuration shown in Figure 1a can be written in the following
function (configuration integral) for the cluster before the full form
partition function of the system can be specified. The config- ) )
uration integral of a molecule is usually obtained by integrating Q4(0) = gy(z) QY (V — ) = 4.Qn (5)
the center of mas®f the molecule oveW, but in the case of
the model drop the location of the center of mass is unknown  The 0 inQ,(0) indicates that the partition function corresponds
since both that center and the volume of the drop are fluctuating.to a configuration in which the center of the drop is fixed at an
To proceed, therefore, we can integrate the geometric center oforigin andg,(vn) is simply the drop partition function presented
the drop overV (even though the fluctuating center of mass ineq 4. The second factor on the right is the partition function
may not lie at that center) and then adjust for the consequencesof the ideal vapor containiny — n molecules in the volum¥
The configuration integral derived in this manner may thus be — v, and the id in the superscript indicates “ideal”. The product
referred to as @seudoconfiguration integral As indicated, it form in the middle of eq 5 results from the decoupling of the
is convenient to use it in the evaluation of the full partition molecules of the vapor from those of the drop, and the product
function, and to make the necessary corrections as we go alongat the extreme right is simply a notational contraction.
However, before proceeding further, it may be instructive to  In the next step we begin to allow the system to assume more
view the fundamental problem in another (more general) way. than one configuration, by allowing additional positions for the
The CNT (capillarity approximation) model of the cluster center of the drop (i.e., we begin the implicit evaluation of the
represents a coarse grained, highly renormalized version of theconfiguration integral). In this context, Figure 1b illustrates a
actual system. Ideally (as in the case of almost all such models),configuration in which the center of the drop has been displaced
the goal is to integrate over certain molecular degrees of freedomthrough a vector distana@l. The original location in Figure
(usually, those that are most difficult to address by rigorous 1la is shown by the dashed outline. The important conclusion
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to be gleaned from Figure 1b is that the movement of the model _ ihcli_
drop (by moving its center) does not necessarily lead to Q',ﬂ_n+—"du 9
molecularconfigurations that were not possible in Figure 1a. WV — vy)

For example, the configuration of the molecules in the drop, _
shown in Figure 1b, such that all drop molecules lie in the lens The substitution of egs 8 and 9 fas andQy_, on the right of
shaped region of overlap between the original and the displaceded 5 then yields for the augmented part|t|on function the result
outline of the drop, is a possible configuration of the same .
molecules in Figure la. Thus, at least as far as the drop is i 0Qn-
g P u [ ﬁ,n + B(V—Nn) dU‘ (10)
—,

concerned, the configuration of drop molecules in Figure 1b Qn (du) =
does not represent a new physical state. To have a new physical

corresponding to translational motion restricted to the volume
du.

state there would have to fa¢ least onedrop molecule in the
nonoverlapped volume designated asimd Figure 1b. Such a

configuration is not possible in Figure 1a. A similar consid- We can write
eration (not addressed in ref 1) applies to the molecules of the

surrounding ideal vapor, and we will address it below. For the aq, alnq, P

Bqn
o

n

d

n

moment we concentrate on the drop. P i e (11)
To represent the augmented partition function that includes n n

the new configuration, both factors in eq 5 must be modified, id

but the modifications must avoid counting the redundant IQN-n _ A 9In Qun = Qe (12)

configurations. This means that in considering the augmented a(V—u) NV — o) N- nkT

partition function of the drop, for example, the additiorgtds

not merely anotheq, centered at the new location of the drop. where P,, and P have the dimensions of pressure and where
Instead, the addition tg, should include only new configura-  indeed, from the usual relations in the canonical ensemble for
tions in which there is at least one drop molecule in the g system in the thermodynamic lim®, must be the pressure
nonoverlapped volumeud Denote byg, the partition function of the surrounding vapor.

for the drop “compressed” into the lens shaped form appearing P, however, demands further discussion. When the drop is
in Figure 1b. Since the compression is really differential (d small enough, surface as well as volume work must be

is a differential volume)g; clearly is given by considered. Indeed, there may be other kinds of work that
depend on “shape” or deformation. To simplify the discussion,
o, P u 6) consider a case in which the only additional work is surface
0= Oh — v, work. Then, a simple analysis of the canonical ensemble for a
system (small enough so that surface terms are important) shows
where the minus sign appears becausésdgositive. d, is the that pressure is specified by
partition function of the redundant configurations so that the
required addition to the partition function, less this redundancy, _[2Ina
. ’ o : . ; . p, = KT (13)
is g, — 0, Substituting eq 6 into this expression gives, for the v, Tna,
addition,
aq and that surface tension is given by
G~ th =7, du (7)
dInq,
= —kT 7o, (14)
so that the augmented partition function becomes TN
5 On the other hand, if we impose a geometrical condition on
dn . ;
q,+—du 8) the drop such that the surface aiggis a known function of
v, vn, (€.9., if the drop is forced to remain spherical, as in CNT)

. . ] N then we can write
This is the factor that must replacg in eq 5 if the partition

function is to include the displaced position of the drop. T(a In qn) kT(a In qn) N
Tn Tna,

We still have to deal withQ{_, the second factor on the v
right of eq 5 that was not addressed in ref 1. When the drop is "
displaced, and even if its molecules are in a configuration within kT(a In qn) (3&) =P (15)
the lens shaped overlap region, the configuration oftthal 02, |tn. \0vnltn n
system, vapor plus drop, will not be redundant as long as there !
is at least one vapor molecule within the nonoverlapped region
to theleft of the lens, since such a position for a vapor molecule
was impossible in the original configuration in Figure 1a. Thus,
in order for the configuration to be fully redundant, the da,
configurations of the vapor molecules must lie outside of the P.=p,— v (8 ) (16)
composite figure generated by the two spheres in Figure 1b. UnfTn
Thus, like the drop, the volume of the vapor must be compressed
in order to generate a redundant configuration....but this time,
from the originalV — v, to V — v, — du. Then the argument o,

=),

Un

/T,

whereP, is the quantity appearing in eq 11. The substitution
of egs 13 and 14 into eq 15 yields

If the drop is constrained to remain spherical, then

for the augmented second factor proceeds in exactly the manner

== a7
of the argument for the first factor and leads to the result

v,

n/T,
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wherer is its radius, so that substitution of eq 17 into eq 16
yields

2
Py=p,— (18)

which is identical to the Laplace equati&hThis identity shows
thatp, is the pressurimsideof the drop, whileP,, is the pressure
P outsideof the drop. There are several caveats. One refers

to the fact that the canonical ensemble relations, egs 13 and,[c;1

14, areequilibrium relations Thus, in the absence of a carrier
gas,P, and P should be the vapor pressure of the drop, or in
the presence of a carrier gas of partial pres$efreP, and P
should equal the vapor pressure of the drop Blus But if the

surrounding vapor is supersaturated, only the drop that serves

J. Phys. Chem. A, Vol. 102, No. 44, 1998551

the partition function of a single drop of size surrounded by
an ideal vapor of pressuf® in the volumeV. Thepseudocon-
figuration integral has been evaluated implicitly and is repre-
sented by the factov. However, because of the redundancy,
illustrated by the discussion concerning Figure 1, its magnitude
must be reduced (i.e., the redundancy in the enumeration of
configurations must be removed). In eq 21, we see that in fact
this reduction is accomplished through division by the volume
9n = KT/(P, + P). Itis as if the center of the drop was restricted
a simple cubic lattice of sites (with lattice paramei®)¥3),
instead of being allowed to move continuously throughdut
SinceQ‘,ﬂ_n refers to an ideal gas, we can write it explicitly
as

_ N—n
as a condensation nucleus (i.e., the drop that satisfies the KelvinQid V=)= V—u,) -
relation?122can be in (unstable) equilibrium with the vapor and """ "ANY (N — )
have P, given by its vapor pressure augmented®y In a YN

saturated vapor the relation applies trivially to a drop of infinite
radius. Anotheimportantcaveat relates to the fact that there
can be circumstances under which eq 18 matbe valid! We
discuss this issue in the following section.

It is useful to continue this line of reasoning concernifg
by returning to Figure 1 which involves a compression of the
drop from a spherical form to the lens shaped region of overlap
corresponding to the initial and displaced positions of the drop.
As long as the displacement is infinitesimal (i.d2) it is a
simple matter of geometry to show that the changes in volume

and surface area of the drop during such a compression are given

by

dv, = —ard|di|, da,= —2zar|di| (19)
so that the ratio of the first to the second differential is once

again 2f, as in eq 17. In this case the constraint that relates

vV o (N-mwV_ ~d —Puy/kT
e QuLy (V) e (22)

where, in the second step, we have taken advantage of the fact
thatv, <V, and in the last step we have used the equation of
state of an ideal gasA is the thermal deBroglie wavelength

of a single molecule. The substitution of this result into eq 21
yields, finally, for the single drop partition function, the
expression

—Pun/KT

On(vn)e (23)

Q (V)= QL. (V) [ﬁ]

In closing this section it is appropriate to reiterate that we have
now identified the volume scale &y = kT/(P, + P), but that
the problem remains the explicit evaluationRq.

the change in surface area to volume is the required transforma-3. Determination of P: Effect of the Model

tion of the drop from a sphere to a lens shape. In any event,
the result is again eq 18 amj is again seen to be the external
pressure. This simple result, although intuitively satisfying, is

The identification ofP, (or ¥y,) brings to the fore the central
role played by themodel In the CNT a physical cluster is
represented by a liquid drop (capillarity approximation), but still

somewhat misleading for reasons that are elaborated in thethe model is not clear about many specifics. For example, in

following section. Thus for the time being we do not Bgt=
P, even for the nucleus, but continue to refer to iPasvithout
attempting to establish its precise physical meaning.

The substitution of eqs 11 and 12 into eq 10, and expansion
of the result to terms linear inugd yields

n

P
k—T + k—_l_] du (20)

Q, (du) = 6, QU + an'ﬁn[
We can now repeat the process of drop displacement, and som
thought will show that in each displacement there will be an
augmentation of the partition function exactly equal to the
second term on the right of eq 20. If the process of displacement
is continued until the entire volumé is covered, the resulting
partition function will then contain a sum of such terms that
represents an integral oversuch that, in place of eq 20, we
obtain

n

) ) P P
Qn V)= anll\cli—n + anll\cli—n[ﬁ- + k_T] V=

|

where in the last step we have retained only the ternVin
because of its overwhelming macroscopic size. Equation 21 is

9,QN_

Vv
KTI(P, + P)] (21)

eq 1, the exponent contains the free energy ahaompressible
drop, but it is never specifically stated that the model drop is
incompressible. In fact, if it were, it would not represent a real
drop since a real dros compressible! However, since its
compressibility is very small, the free energy in the exponent
can be regarded as an excellent approximation, so that the issue
of “compressible versus incompressible” never arises. Never-
theless, we can inquire into how the translational free energy

é)f the drop is affected if we do insist that it mompletely

incompressible. In such a case, as long as the drop is required
to remain spherical as is assumed in the CNT, the center of
mass would have to coincide with the geometric center of the
drop. It can be demonstrated that the immediate effect is to set
Y, equal to the cube of the thermal deBroglie wavelength of a
particle having the mass of the drop. Then it can be shown
that, in essence, this leads to the exceedingly large valie of
determined by Lothe and PouAdSince both experiment and
the popular consensus deny this large value, a model in which
the drop is completely incompressible does not seem satisfac-
tory.

If we then allow the drop to be compressible and to have the
compressibility of the bulk liquid, the drop volume must be
allowed to fluctuate. The fluctuation is at fixed n (not fixed
average n so that the drop is not necessarily material
equilibrium with the surrounding vapor. The easiest way to
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visualize this situation is to imagine that the drop is contained density. In view of the previous discussion, this situation may
within a closed volume delineated by an abstract membranehave to be conditioned by the application of constraints that
having no elastic tension. The membrane does not allow the force the drop to have this value of compressibility. Of course,
mixing of molecules of the surrounding vapor with those of these constraints enter intq,. It is actually possible to
the drop (i.e., it is impermeable to both drop and vapor determinePq(vn), wherew, is the volume required by CNT,
molecules). Considering, in the interest of simplicity, the case through an analysis of the fluctuation of a compressible drop.

in which carrier gas is absent,Ffthe pressure of the vapor is

This determination is facilitated by the introduction of an

less than the vapor pressure of the drop within the membrane,equation similar to eq 5 and differing from it in tha is

insidethe membrane molecules will “evaporate” from that drop

so that, in a crude sense (since the system is not in the

thermodynamic limit), inside the membrane vapor asdaller
drop will coexist and, will have increased. Because of surface

tension, the vapor pressure of the smaller drop will exceed that

of the original drop, and evaporation will continue until only

replaced by d, given by

aq dlng
dQn =0, (Un + dUn) — Oy (Un) = ayn dUn =0y v -
n

n

du,
(24)

vapor remains inside the membrane, and this vapor will expand The meaning of g, is obvious. It is the difference betweep

until its pressure equals the external presdurev, will then
be that of a vapor rather than a liquid (contrary to the
requirements of the CNT model).

The preferred method for dealing with detailed balance in
vapor phase nucleation theory (the so-cakatktic methotf)
involves reference to the equilibrium distribution of clusters in
the saturatedvapor. In deference to the importance of this

for a drop of volumey, and one of volume, + dun. As such,

it is a partition function that includes only those molecular
configurations found inv, + du, that are not found in vp.
Clearly, in the larger volume, all of the configurations in the
smaller volume could be realized as well as additional configu-
rations that are characterized by havaigleastone molecule

in dun. This molecule has been termed the “shell molecule”

procedure we will continue the immediate discussion by and has now been discussed in a variety of contéx3ts23.24t

considering drops in such a saturated vapor, but the conclusionallows one to avoid redundant counting of configurations. It

can easily be demonstrated for a vapor that is either unsaturateds the way in which the volume of the drop must be defined in

or supersaturated. P is the pressure in the saturated vapor terms of the degrees of freedom of it®leculegather than by

(i.e., the vapor pressure of the bulk liquid, then any drop of the volume of some container in which it resides®

less than infinite radius will exhibit a vapor pressure that exceeds  Since the drop is fluctuating, its full partition function, with

P). Thus the argument of the preceding paragraph will apply its center fixed, must involve a sum over all volumgs and

to drops of any size and each will evolve toward a vapor as a the partition function of the full system, vapor plus drop, must

final state, thereby violating a requirement of the CNT model. also involve this sum. Atone particular volume, the full
The only way to ensure this requirement would involve the partition function is given by eq 5 with, replaced by d, and,

application of additional constraints to the drop so that the so for the sum over all volumes, the partition function is given

fluctuation of its volume remained within the limits typical of by

the bulk liquid. Such constraints would provide another means

for the drop to exchange work with its environment (i.e., work

could be done against the constraints). This would generateQn(O)

additional terms in eq 15 because forces in additiopstand

y would be involved and would also involve these forces. The

simple Laplace relation would be compromised. This constitutes

the elaboration of the second caveat mentioned below eq 19.

The argument of the above few paragraphs is of course closelywhere we have used eq 11. Substituting eq 22 gives

connected to the Kelvin relatiéh?? that specifies the vapor

pressure of a drop. However that relation is usually applied to P.(vy)

kT

dInq,
=S50
n

P .
v) doy = [ 17 0 Qun (V — 2p) do, (25)

= ‘/;n dqn Qililj—n (V - s ilflj—n (V -

QRO=Q\ M [ (v € "My, (26)

a drop that can exchange molecules veithof the surrounding
vapor. Since our drop is alosedsystem in which n must
remain constant, some qu_allfylng explanation beyond simple  1,q integral in this equation is the partition function for a
mention of the Kelvin relation seems necessary. constant pressure ensembfewhich the volume scale ikT/

The single exception to the above scenario occurs in the casep,. This ensemble and its volume scale, especially for the case
of very large, essentially infinite, drops. In that case the vapor of a small system, has recently been the subject of considerable
pressure of the drop would be that of the bulk liquid (i.e., the attention!3-15 For the purposes of CNT, we need to determine
pressure of the saturated vapor) so that the drop would have nop(,,) where v, is the volume dictated by the density of the
tendency to expand, and additional constraints would be pylk liquid, so thatu, is the average volume of the fluctuating
unnecessary. Then the Laplace relation would still hold and drop. For a macroscopic drop, where the mode and the mean
Pn would equalP. can be considered equal, this average could be obtained by

In the analysis surrounding Figure 1, the choicevgivas determining the value af, that maximizes the integrand in eq
dictated by the density of the bulk liquid; the CNT model 26. For a small drop, this procedure begins to lose accuracy,
specifically chooses a cluster of fixed volume given by= but usually it remains an excellent approximation down to
Npiiq Wherepiq is the density of that bulk liquid. Inareal drop extremely small systems. For this reason, and because of the
vn would fluctuate, and the choice of in CNT is therefore an simple physically satisfying result that it yields, we adopt it

averagevolume that we are forced to use within the framework
of the model. The relative magnitude of the fluctuation should
be small as it is in the bulk liquid, and it should be controlled
by the isothermal compressibility of that liquid at its normal

here.

Then, differentiating the integrand with respect:tg and
setting the result equal to zero to determine the maximum, yields
the relation
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alnP, dInq, fluctuation It is as if there is aruncertainty principle in
T—, =Kl ——-P=P,—P (27) coordinate spacelone, such that the drop cannot be located
more precisely than within its volume of fluctuation.

—k

n n

where in the last step we have used eq 11. The left side of eq
27 can be expressed as 4. An Assembly of Drops
We now turn our attention to an assembly of drops of varying
dInP, _ kTPy_ kT (9P} _ kT 28) size, and attempt to derive the equilibrium size distributipn
“n v, Pk such that there ardl, drops containingh molecules. In the
interest of generality, we do not restrict the argument to the

wherex = —(duvn /10Pp)1/vn is the isothermal compressibility of  cases in which the vapor is either undersaturated or at most

v, P, dv, - P.vs

the drop. The substitution of eq 28 into eq 27 yields saturated, but allow supersaturation as well. However, in the
latter case the vapor must be subject to an implicit formal

P2— PP — kT _ 0 (29) constraint (whose nature we need not specify) that preserves
KUn supersaturation. If, in the development of the full theory of

nucleation, the preferrekinetic methods used, the necessary
The physically meaningful root of this quadratic equation is equilibrium distribution, at saturation, can be extracted as a
special case of the distribution derived here.
p — P 4 Ez n kT (30) For the purpose of deriving the equilibrium distribution, eq
2 23 must be replaced by the partition function for the assembly.
The first step in this process is the replacement of the partition
This simple result is remarkable in many respects. Itis general function for the ideal vapor in eq 22 with the corresponding
in the sense that it is valid, independent of whether constraints function appropriate to the multidrop system. Thus denoting
of the sort discussed above (required in order to maintain the the number of single molecules B we write
drop at the uniform average density characteristic of the bulk

liquid) are present. Furthermore, for a very large drog, (V- Nnun)Nl
would be large enough so that the second term under the square_iy _ n=
root sign could be neglected to yield the result, QNl'Nn (V= 2 Noww) = AN | B
ES
!
P.=P 31 id — Py /KT\Ny
" (31) Qe V[T ™)™ (34)
This confirms the conclusion arrived at in the qualitative "~
discussion at the beginning of this section, namelyfiatould ~ where in the last step, the same expansion was used as in the
equal the external pressure, and the simple Laplace relationjast two steps of eq 22. Assuming that the drops (clusters) do
would hold for a large drop. not interact with one another, we can then write for the complete

_ In the opposite extreme, withand density still typical of a  partition function of the dropsvapor system in a particular
liquid, the second term under the square root sign dominatesdjstribution N, the expression

so that, to a high degree of approximation, _
- Qu, V) = QUMW [ )™ rl
Pn = —>PpP (32) n= " n=
V v, (P, +P)a.Vv|™ y
——| N =Qu V)
KT "o RN

(P, + P)g,Ve Pr/KT|N Va
KT Mot =

This is also in accord with the qualitative discussion at the
beginning of this section (of the caveat of the preceding section),
and that discussion therefore explains the physical basis of eqs
31 and 32. Finally, if the “drop” consisted of vapor so tkat
was large, the second term would again be negligible Rnd
would again be equal tB.

The remarkable (and useful) aspect of the fluctuation analysis
is that it has allowed us to treat the effects of the constraining
forces (when such forces are present), to the degree necessary
for the determination dP,, without having to specify the precise ~ Where we have made use of both eqs 21 and 34. The full
nature of those forces! The minimum information required is Partition function, including all distributions, is then
the value of an assumed (uniform) average density and that of

KT

(P, + P)g,ve ™%
IN,! (35)

the corresponding. Q. (V)= % Qu, V)=
Equation 32 requires {N
T kT Vi {(Py+ P)g,ve "
P +P P, kTkv, =0, (33) & A3N1N1! 1 KT n

where, in the second step, we have used the facP{hgtecified where the sums are over all distributioNs such that
by eq 32 is much larger thdh The quantityo, is the variance

of the volume fluctuation in the standard formulation of the N. + NN =N (37)
. . . 1 n

constant pressure ensembleThus in the case of the liquid

drop, eq 33 shows that the volume scale is the variance of the

volume fluctuation of the drop or, more simpljre volume of The equilibrium distribution is found in the usual manner by

n=
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finding the maximum term in the sum of eq 36 subject to the is an implicit underlying theme that deserves comment. This

conservation condition, eq 37. The result is concerns the volume scatg (or the length scal@ﬁ’s). This
scale is required for the proper treatment of the translational
— (P, + PV _1 _ free energy of a model cluster. In a fully molecular theory, the
N, = g, exp T(Pun nkTA) (38) _ ; .
kT k problem wouldnever arise, since a clean separation of trans-

5 lational and internal degrees of freedom would be effected. As
ANy fyap indicated in the opening section, it is the representation of the
or A== ~=17 (9 luster b grained lized model that leads t
Y, KT cluster by a coarse-grained renormalized model that leads to
the problem. By its nature, the model requires one to evaluate
In these equationd, is a Lagrange multiplier angyapis the apart of the entropy (or free energy) of the systentaordinate
chemical potential of the vapor. The last equality in the second space alone and not in the fydhasespace of the system. In
equation of eq 39 follows upon recognition of the standard form the full phase space where the full physical entropy of the system
for the chemical potential of an ideal gas. The substitution of is defined, the length scale is constant and well-known (i.e., it
the expression fol in eq 39 into eq 38, together with the is Planck’s constant). In coordinate space, the length scale for
expression foig, from eq 4, yields the relevanpart of the entropy proves to be extremely sensitive
to the model. We have already mentioned this in connection
N = (P, +PV ¢+ 1 B n 40 with a completely incompressible drop. In another &seated
no kT exp{ kT[n(Mqu ”Vap) Va“]} (40) almost 30 years ago, the drop was modeled as encapsulated in
] o ) ) a rigid, impermeable spherical container centered on its center
NeglectingP, in view of eq 32, while making use of eq 33 and 4 mass, thereby isolating it entirely from the surrounding vapor.

_V
Nl—Fé

multiplying and dividing the right side of eq 41 By gives In this case, the length scale proved to be the distance of
rise to fluctuation of the center of mass of a similar droplet confined
vV 1 to arigid spherical container in which the center of mass and
N, = N Nyap exr{— ﬁ.[n(,u”q — Uyap T Van]} = the center of the container wenet required to coincide. For
n' “vaj

drops in the size range of typical condensation embryos, this

1y 1 1 _ length proved to be of magnitude similar to that of the length

S(psa:p )[N"apeXF{ k'I'[n(‘M”QI Huag) + Va“]}] (41) derived in the present paper. However, for large drops it
vepsn approached zero, leading to an infinite translational free energy.

Wherep\s,z:, is the density of the saturated vapor and we have This was a direct consequence of the isolation of the drop from

used the relations, the surrounding vapor. The length scale of the present paper

Nyap = ij:L and p\s,itp — N:::/V, whereN\S,gL is the number of does not collapse to zero as the drop becomes large, but assumes

single molecules in the saturated vapor. Comparison of eq 41 finite value determined by the other limiting value of the root,

with eq 2 shows that eq 30, namely eq 31.This is a direct consequence of the fact
that the model drop is coupled to the vapor.

__1 (42) However, it should be emphasized that one is at liberty to

pig:pn choose from a variety of models. The fundamental question is

“how accurately does thevaraging, implicit in the model,
and that 15 appears naturally. For typical liquids, the value of conform to the desired integratiorver the difficult degrees of
R specified by eq 42 is of the order of 40as experiment  freedom that one wishes tov@d? For example, in the
suggests, rather than the16- 108 suggested in the original  capillarity approximation, the drop is assumed to be incom-
work of Lothe and Pound. Bell and Stre¥® have recently noted  pressible for the purpose of representing its free energy, and
that the use oR as specified by eq 42 improves the agreement this approximation is acceptable since the compressibilities of
between CNT and experiment, insofar as the temperaturereal liquids are quite small. At the same time, the volume of a
dependence of the rate of nucleation is concerned. real drop (cluster) is known to fluctuate. Although, this

If, for the implementation of th&inetic methodthe vapor fluctuation is also small, it cannot be ignoredthe e/aluation

was justsaturated eq 41 would still apply, buS would be set of the redundancy that is compensated by th&me scale
to unity. Then S would reappear, in the rate theory, through connected to the fluctuationTo ignore it would be equivalent
the consideration of the ratio of the condensation coefficients to including the redundancy in the theory and would lead to an

in the supersaturated and saturated vapors, respectively. unacceptably large replacement free energy factor!

There is one other question that deserves comment. Thisis apgther point should be made. This is the fact that it is not
the so-called “internal consistency” requiremtét in which strictly correct to define the nucleus as ttationary drop in
Nn should reduce tdl.p whenn = 1. It will be noticed that,  ynstable equilibrium with the supersaturated vapor, as is

from the beginning, the theory treats single molecules and conyentional in nucleation theory. After all, the translational
clusters differently. In fact eqs 31 and 32 provide separate free energy is part of the work of formation of the drop. This
expressions fol, andNy. Thus, in fact, therés no requirement  frae energy is in essence given by the negative of the logarithm
for internal consistency! Nevertheless, it can be shiotiat of the preexponential factor in the expression grand itself
eq 42 isexactlyinternally consistent for some simple free depends om. Thus, the top of the free energy barrier, and the
volume models of the liquid, andlmostinternally consistent ;6 of the nucleus, is determined in part by these free energy
for most typical liquids. This proof is presented in ref 1 and ,nwibutions. In most cases the effect is small vis a vis the
will not be repeated here. determination of the critical supersaturation, but it is rigorously
present. Despite this, it can be shown, by a fully molecular
analysid* of the nucleation process, that the main effect of
Although the explicit goal of the present paper is the translation is to scale the nucleation rate by the volume of the
resolution of the “replacement free energy” controversy, there system.

5. Concluding Remarks
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